Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 319: 121187, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567720

RESUMO

Resistant starch (RS) results in relatively high health-beneficial butyrate levels upon fermentation by gut microbiota. We studied how physico-chemical characteristics of RS-3 influenced butyrate production during fermentation. Six highly resistant RS-3 substrates (intrinsic RS-3, 80-95 % RS) differing in chain length (DPn 16-76), Mw distribution (PI) and crystal type (A/B) were fermented in vitro by pooled adult faecal inoculum. All intrinsic RS-3 substrates were fermented to relatively high butyrate levels (acetate/butyrate ≤ 2.5), and especially fermentation of A-type RS-3 prepared from polydisperse α-1,4 glucans resulted in the highest relative butyrate amount produced (acetate/butyrate: 1). Analysis of the microbiota composition after fermentation revealed that intrinsic RS-3 stimulated primarily Lachnospiraceae, Bifidobacterium and Ruminococcus, but the relative abundances of these taxa differed slightly depending on the RS-3 physico-chemical characteristics. Especially intrinsic RS-3 of narrow disperse Mw distribution stimulated relatively more Ruminococcus. Selected RS fractions (polydisperse Mw distribution) obtained after pre-digestion were fermented to acetate and butyrate (ratio ≤ 1.8) and stimulated Lachnospiraceae and Bifidobacterium. This study indicates that especially the α-1,4 glucan Mw distribution dependent microstructure of RS-3 influences butyrate production and microbiota composition during RS-3 fermentation.

2.
J Phys Chem C Nanomater Interfaces ; 127(16): 7792-7807, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37144043

RESUMO

For mixed MoW carbide catalysts, the relationship between synthesis conditions, evolution of (mixed) phases, extent of mixing, and catalytic performance of supported Mo/W carbides remains unclear. In this study, we prepared a series of carbon nanofiber-supported mixed Mo/W-carbide catalysts with varying Mo and W compositions using either temperature-programmed reduction (TPR) or carbothermal reduction (CR). Regardless of the synthesis method, all bimetallic catalysts (Mo:W bulk ratios of 1:3, 1:1, and 3:1) were mixed at the nanoscale, although the Mo/W ratio in individual nanoparticles varied from the expected bulk values. Moreover, the crystal structures of the produced phases and nanoparticle sizes differed depending on the synthesis method. When using the TPR method, a cubic carbide (MeC1-x ) phase with 3-4 nm nanoparticles was obtained, while a hexagonal phase (Me2C) with 4-5 nm nanoparticles was found when using the CR method. The TPR-synthesized carbides exhibited higher activity for the hydrodeoxygenation of fatty acids, tentatively attributed to a combination of crystal structure and particle size.

3.
Carbohydr Polym ; 309: 120705, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36906366

RESUMO

The influence of molecular weight, polydispersity, and degree of branching of four potato starches (Paselli MD10, Eliane MD6, Eliane MD2, and highly branched starch) on the adsorption rates on activated carbon (Norit CA1) was investigated. Changes in starch concentration and size distribution over time were analysed by Total Starch Assay and Size Exclusion Chromatography. Average molecular weight and degree of branching of a starch scaled negatively with average adsorption rate. Within a size-distribution, adsorption rates scaled negatively with increasing molecule size, resulting in an increased average molecular weight in solution of between 25 % and 213 % and a decreased polydispersity of between 13 % and 38 %. Simulation with dummy distributions estimated the ratio of adsorption rates for 20th percentile and 80th percentile molecules within a distribution to range between a factor 4 and 8 for the different starches. Competitive adsorption decreased the adsorption rate of molecules above the average size within a sample distribution.

4.
Carbohydr Polym ; 265: 118069, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33966833

RESUMO

Resistant starch type 3 (RS-3) holds great potential as a prebiotic by supporting gut microbiota following intestinal digestion. However the factors influencing the digestibility of RS-3 are largely unknown. This research aims to reveal how crystal type and molecular weight (distribution) of RS-3 influence its resistance. Narrow and polydisperse α-glucans of degree of polymerization (DP) 14-76, either obtained by enzymatic synthesis or debranching amylopectins from different sources, were crystallized in 12 different A- or B-type crystals and in vitro digested. Crystal type had the largest influence on resistance to digestion (A >>> B), followed by molecular weight (Mw) (high DP >> low DP) and Mw distribution (narrow disperse > polydisperse). B-type crystals escaping digestion changed in Mw and Mw distribution compared to that in the original B-type crystals, whereas A-type crystals were unchanged. This indicates that pancreatic α-amylase binds and acts differently to A- or B-type RS-3 crystals.


Assuntos
Digestão , Amido Resistente/metabolismo , Amido/química , Amido/metabolismo , Amilopectina/química , Cristalização , Fibras na Dieta/metabolismo , Microbioma Gastrointestinal , Glucanos/química , Glucose/metabolismo , Humanos , Hidrólise , Microscopia Eletrônica de Varredura/métodos , Peso Molecular , Prebióticos
5.
Int J Biol Macromol ; 181: 762-768, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33798574

RESUMO

Starch-based isomalto/malto-polysaccharides (IMMPs) are soluble dietary fibres produced by the incubation of α-(1 → 4) linked glucans with the 4,6-α-glucanotransferase (GTFB) enzyme. In this study, we investigated the reaction dynamics of the GTFB enzyme by using isoamylase debranched starches as simplified linear substrates. Modification of α-glucans by GTFB was investigated over time and analysed with 1H NMR, HPSEC, HPAEC combined with glucose release measurements. We demonstrate that GTFB modification of linear substrates followed a substrate/acceptor model, in which α-(1 → 4) linked glucans DP ≥ 6 functioned as donor substrate, and α-(1 → 4) linked malto-oligomers DP < 6 functioned as acceptor. The presence of α-(1 → 4) linked malto-oligomers DP < 6 resulted in higher GTFB transferase activity, while their absence resulted in higher GTFB hydrolytic activity. The information obtained in this study provides a better insight into GTFB reaction dynamics and will be useful for α-glucan selection for the targeted synthesis of IMMPs in the future.


Assuntos
Glucanos/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Isomaltose/biossíntese , Polissacarídeos/biossíntese , Hidrólise , Especificidade por Substrato
6.
Carbohydr Polym ; 205: 279-286, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446106

RESUMO

In this study, we present an enzymatic fingerprinting method for the characterization of isomalto/malto-polysaccharides (IMMPs). IMMPs are produced by the modification of starch with the 4,6-α-glucanotransferase (GTFB) enzyme and consist of α-(1→4), α-(1→6) and α-(1→4,6) linked glucoses. Enzymes were used separately, simultaneously or in successive order to specifically degrade and/or reveal IMMP substructures. The enzymatic digests were subsequently analysed with HPSEC and HPAEC to reveal the chain length distribution (CLD) of different IMMP substructures. The presence of amylose in the substrate resulted in the formation of linear α-(1→6) linked glycosidic chains (13.5 kDa) in the former amylopectin fraction. The length of these chains indicates that GTFB transferase activity on amylopectin is more likely to elongate single amylopectin chains than to provide an even distribution. Enzymatic fingerprinting also revealed that the GTFB enzyme is capable of introducing large (20 kDa) linear α-(1→6) linked glycosidic chains in the α-glucan substrate.


Assuntos
Amilases/química , Amilopectina/química , Amilose/química , Glicosídeo Hidrolases/química , Isoamilase/química , Estrutura Molecular , Solanum tuberosum/química
7.
Carbohydr Polym ; 185: 179-186, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29421055

RESUMO

Isomalto/malto-polysaccharides (IMMPs) are soluble dietary fibres produced by the enzymatic modification of starch with 4,6-α-glucanotransferase (GTFB). The structure, size, and linkage distribution of these IMMPs has remained largely unknown, since most structural information has been based on indirect measurements such as total α-(1→6) content, iodine staining and GTFB hydrolytic activity. This study provides a deeper understanding of IMMP structure in relation to its respective starch substrate, by combining preparative fractionation with linkage compositition analysis. IMMPs were produced from a variety of amylose-rich and amylose-free starches. The extent of modification was investigated per IMMP molecular weight (Mw)-fraction, distinguishing between linear α-(1→6) linkages introduced by GTFB and starch's native α-(1→4,6) branching points. It emerged that the amount of α-(1→6) linkages was consistently higher in IMMP low Mw-fractions and that GTFB activity was limited by native α-(1→4,6) linkages. The presence of amylose turned out to be a prerequisite for the incorporation of linear α-(1→6) linkages in amylopectin.

8.
Bioresour Technol ; 211: 267-72, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27023381

RESUMO

Isolated polyhydroxyalkanoates (PHA) can be used to produce biobased bulk chemicals. However, isolation is complex and costly. To circumvent this, whole cells containing PHA may be used. Here, PHA containing 3-hydroxybutyrate and small amounts of 3-hydroxyvalerate was produced from wastewater and used in the conversion of the 3-hydroxybutyrate monomer to methyl crotonate. Due to the increased complexity of whole cell reaction mixtures compared to pure PHA, the effect of 3-hydroxyvalerate content, magnesium salts and water content was studied in order to evaluate the need for downstream processing. A water content up to 20% and the presence of 3-hydroxyvalerate have no influence on the conversion of the 3-hydroxybutyrate to methyl crotonate. The presence of Mg(2+)-ions resulted either in an increased yield or in byproduct formation depending on the counter ion. Overall, it is possible to bypass a major part of the downstream processing of PHA for the production of biobased chemicals.


Assuntos
Crotonatos , Poli-Hidroxialcanoatos , Águas Residuárias/química , Ácido 3-Hidroxibutírico/análise , Ácido 3-Hidroxibutírico/química , Crotonatos/análise , Crotonatos/química , Ácidos Pentanoicos/análise , Ácidos Pentanoicos/química , Poli-Hidroxialcanoatos/análise , Poli-Hidroxialcanoatos/química
9.
J Am Chem Soc ; 131(20): 7197-203, 2009 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-19402702

RESUMO

The effects of metal particle size in catalysis are of prime scientific and industrial importance and call for a better understanding. In this paper the origin of the cobalt particle size effects in Fischer-Tropsch (FT) catalysis was studied. Steady-State Isotopic Transient Kinetic Analysis (SSITKA) was applied to provide surface residence times and coverages of reaction intermediates as a function of Co particle size (2.6-16 nm). For carbon nanofiber supported cobalt catalysts at 210 degrees C and H(2)/CO = 10 v/v, it appeared that the surface residence times of reversibly bonded CH(x) and OH(x) intermediates increased, whereas that of CO decreased for small (<6 nm) Co particles. A higher coverage of irreversibly bonded CO was found for small Co particles that was ascribed to a larger fraction of low-coordinated surface sites. The coverages and residence times obtained from SSITKA were used to describe the surface-specific activity (TOF) quantitatively and the CH(4) selectivity qualitatively as a function of Co particle size for the FT reaction (220 degrees C, H(2)/CO = 2). The lower TOF of Co particles <6 nm is caused by both blocking of edge/corner sites and a lower intrinsic activity at the small terraces. The higher methane selectivity of small Co particles is mainly brought about by their higher hydrogen coverages.

10.
J Mol Biol ; 299(3): 737-55, 2000 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-10835281

RESUMO

Copper K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy and (15)N NMR relaxation studies were performed on samples of a variant azurin in which the surface-exposed histidine ligand of the copper atom (His117) has been replaced by glycine. The experiments were performed to probe the structure of the active site and the protein dynamics. The cavity in the protein structure created by the His-->Gly replacement could be filled by external ligands, which can either restore the spectroscopic properties of the original type-1 copper site or create a new type-2 copper site. The binding of external ligands occurs only when the copper atom is in its oxidised state. In the reduced form, the binding is abolished. From the EXAFS experiments, it is concluded that for the oxidised type-1 copper sites the protein plus external ligand (L) provide an NSS*L donor set deriving from His46, Cys112, Met121 and the external ligand. The type-2 copper site features an S(N/O)(3) donor set in which the S-donor derives from Cys112, one N-donor from His46 and the remaining two N or O donors from one or more external ligands. Upon reduction of the type-1 as well as the type-2 site, the external ligand drops out of the copper site and the coordination reduces to 3-fold with an SS*N donor set deriving from His46, Cys112 and Met121. The Cu-S(delta)(Met) distance is reduced from about 3.2 to 2.3 A. Analysis of the NMR data shows that the hydrophobic patch around His117 has gained fluxionality when compared to wild-type azurin, which may explain why the His117Gly variant is able to accommodate a variety of external ligands of different sizes and with different chelating properties. On the other hand, the structure and dynamics of the beta-sandwich, which comprises the main body of the protein, is only slightly affected by the mutation. The unusually high reduction potential of the His117Gly azurin is discussed in light of the present results.


Assuntos
Azurina/química , Azurina/metabolismo , Cobre/metabolismo , Histidina/metabolismo , Substituição de Aminoácidos/genética , Azurina/genética , Sítios de Ligação , Quelantes/química , Quelantes/metabolismo , Simulação por Computador , Cobre/química , Análise de Fourier , Histidina/genética , Concentração de Íons de Hidrogênio , Ligantes , Modelos Moleculares , Mutação/genética , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Conformação Proteica , Soluções , Espectrofotometria , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...